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For the sake of presentation simplicity and to make the Appendix self-
contained, the enumeration of Tables, scenarios and equations in the
Appendix is independent of the enumeration in the main text.



Al.Proof of Theorem 1

Theorem 1. A confirmation measure being strictly monotonic in a given
perspective, c¢(H.E) = f(Pr., Prr) with f being strictly increasing in the first
argument and strictly decreasing in the second argument, is not strictly
monotonic in the other perspectives.

Proof. Consider scenario 1 corresponding to the contingency table in Table 1
and scenario 2 corresponding to the contingency table in Table 2.

Table 1. Contingency table for scenario 1

Hl —|H1 Z
E1 a=10 c1=2 ait+ci=12
—FE b=10 di=T78 bi1+d,=88
z a1 +b:=20 c1+d1=80 |(]|:100
Table 2. Contingency table for scenario 2
HZ —|H2 z
E> a»=20 =4 artc,=24
—E> b,=0 d>=76 b +d>=76
Z ar»+b,=20 cr+dr=80 |(]|:100
Observe that
Pr(H, | E,) = —2 Y Pr(H,|E,)=0.833
a, +c¢, a,+c,
a, + b, a, +b,
and Pr(H))= =Pr(H,)=0.2

a,+b, +c, +d, - a, +b,+c, +d,
and therefore for any confirmation measure csns(H,E) = fimp(Pr(H|E), Pr(H))

strictly monotonic in the Bayesian perspective we get:

csmB(Hl’El):csmB(HZ’EZ)

Observe also that

Pr(H, | —E,) =

=0.114 and Pr(H,|—E,)=

b,

b, +d,




Thus, having
@ __ % and b, b, ,
a +c, a,+c, b +d, b,+d,
for any confirmation measure cgmss(H,E) = finss(Pr(H|E), Pr(H|~E)) strictly
monotonic in the strong Bayesian perspective we get:

CsmSB (Hl’El ) < csmSB (HZ’EZ)

)

As a result, cawsp(H,E) cannot respect the strict monotonicity in the Bayesian

perspective as by (1) it should give cumss(H1,E1) = csmsp(Ha,E>) instead of (2).
With analogous examples one can prove the thesis for all the remaining

couples of perspectives of confirmation.

Let us conclude the proof, by showing that the hypothesis that f in
c(H,E) = f(Pr, Prr) is strictly increasing in the first argument and strictly
decreasing in the second argument is necessary and cannot be removed. Let us
observe that there exists a confirmation measure cy(H,E) which is
“universally” monotonic in all the four perspectives:

1 if ad —be >0,
¢y (HE)=10 if ad —bc=0, )
~1if ad — be <.

It is easy to see that one can write cu(H,E)=f(Pr., Prr) in terms of left- and
right-hand side probabilities Pr. and Prr of any of the four perspectives as
follows:

1 if Pr; >Pry,
cy(HE)=410 if Pr, =Prg, @)
—1if Pr; <Pr;.

The confirmation measure cy(H,E) succeeds in respecting the monotonicity in
all the four perspectives because in any perspective it is non-decreasing in the
first argument and non-increasing in the second argument, rather than being
strictly increasing in the first argument and strictly decreasing in the second
argument, as required by the hypothesis of Theorem 1. o



A2. Proof of Observation 1

Observation 1. Measure V(H,E) respects monotonicity M.
Proof. Measure V(H,E) is defined in the following way:

Pr(E|H)—-Pr(E)  ad—bc
1-Pr(E)  (a+b)(b+d)
Pr(E|H)—-Pr(E)  ad—-bc
Pr(E) "~ (a+c)a+b)
To show that it respects monotonicity M, let us first consider V(H,E) in case
of confirmation, i.e., when ad-bc>0. Let us verify if V(H,E) is non-
decreasing with respect to a, i.e., if an increase of @ by A>0 will not result in
decrease of V(H,E). Simple algebraic transformations show that:

in case of confirmation
V(H,E)=

in case of disconfirmation

(@a+Ad-bc  ad-bc bdA + bcA S
(a+A+b)b+d) (a+b)(b+d)_(a+A+b)(b+d)(a+b)_

Thus, V(H,E) (in case of confirmation) is non-decreasing with respect to a.

Now, let us verify if V(H,E) is non-increasing with respect to b, i.e., if an
increase of b by A>0 will not result in increase of V(H,E). Simple algebraic
transformations show that:

ad —(b+A)c ~__ad—bc
(a+b+AN)b+A+d) (a+b)(b+d)

_ (bA+ A’)(bc - ad) — ad(aA + bA + cA + dA) <0
 (a+b+Ab+A+d)a+b)b+d)

This is because: PA+A>>0, ad(aA+bA+cA+dA)>0, and (bc-ad)<0 as we
consider the case of confirmation. Thus, we can conclude that V(H,E) (in case
of confirmation) is non-increasing with respect to b.

Clearly, V(H.E) is also non-increasing with respect to c, as increase of ¢ by
A>0 will result in decrease of the numerator: ad-bc (while the denominator:
(a+b)(b+d) remains unchanged) and therefore in decrease of V(H,E).

Finally, let us verify if V(H,E) is non-decreasing with respect to d, i.e., if
an increase of d by A>0 will not result in decrease of V(H,E). Simple
algebraic transformations show that:

a(d+A)—-bc  ad—-bc abA + bcA

(a+b)b+d+A) (a+b)(b+d):(a+b)(b+d)(b+d+A)>0




Thus, V(H,E) (in case of confirmation) is non-decreasing with respect to d.

Since all four conditions are satisfied, the hypothesis that measure V(H.E)
in case of confirmation has the property of monotonicity M is true. The proof
that measure V(H,E) satisfies the property of monotonicity M in case of
disconfirmation is the same as for measure Z(H,E) in case of disconfirmation
(see Greco, S., Stowinski, R., Szczech, 1., 2008. Assessing the quality of rules
with a new monotonic interestingness measure Z. In: Rutkowski, L.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.), Artificial Intelligence and
Soft Computing (ICAISC 2008), LNAIL vol. 5097, pp. 556-565. Springer,
Heidelberg).

A3. Proof of Theorem 2

Theorem 2. Under weak Ex;, confirmation measure ¢(H,E) cannot attain its
maximum value unless £ |= H or —F |- —H, i.e., ¢=0 or b=0. Confirmation
measure c(H,E) satisfying weak Ex; cannot attain its minimum value unless
E|=—Hor—E|=H, i.e., a=0 or d=0.

Proof. Suppose, by contradiction, that ¢(H,E) attains its maximum value but it
is not true that E|=H nor —F |=—H. This means that not (£ |= H) and
not (—£ |= —H), which means that ¢>0 and 5>0.

Consider now E* and H* such that E* |= H* and —F* |= -H*. By weak
Exi, we get: c(H*,E*) > ¢(H,E), which makes a contradiction, because c(H,E)
was supposed to attain its maximum value.

By definition, £ |= H is equivalent to ¢=0, and —F |= —H is equivalent to
b=0. Thus, we conclude that ¢(H,E) cannot attain its maximum value unless
E|=H or —F |=—H. Analogous proof holds for the case in which ¢(H,E)
attains its minimum value. [J

A4. Proof of Theorem 3

Theorem 3. Under weak L-Ex;, confirmation measure ¢(H,E) cannot attain
its maximum value unless H |= E or —H |= —E, i.e., b=0 or ¢=0. Confirmation
measure c(H,F) satisfying weak L-Ex; cannot attain its minimum value unless
H|=—E or —H |=E, i.e., a=0 or d=0.



Proof. Let us observe that Theorem 3 is the counterpart of Theorem 2 with
respect to weak L-Ex; property. Thus, we give it without proof because it can
be proved analogously to Theorem 2.

AS. Proof of Theorem 4

Theorem 4. Confirmation measures strictly monotonic in the strong
Bayesian perspective satisfy weak Ex; property. Confirmation measures
strictly monotonic in the strong likelihoodist perspective satisfy weak L-Ex;

property.

Proof. The condition v(Ha,Ex)>v(Hp,EB) can be satisfied in the following
cases

a) V(HaEA)=V and v(Hs,EB)<0, which means Ea|=Ha and not Es|=Hsz,
which implies Pr(Ha|EA)=1 and Pr Hg|EB)<I;

b) Wv(Ha,Ea)=0 and v(Hs,Es)=-V, which means neither Eal]= Ha nor
EA="Hs, and  EgjJ=—Hs, which implies 0< Pr(HalEa)<l and
Pr(Hs|EB)=0.

Analogously, the condition v(Ha, ~Ea)<v(Hs, —Eg) can be satisfied in the
following cases

c) V(Ha,"Ea)<0 and v(Hs, —Eg)=V, which means not —Ea|= Ha and
—FEg|=Hg, which implies Pr(Ha| ~Ea)<l and Pr(Hs[~EB)=1;

d) Wv(Ha,~Ea)=-V and v(Hg|~Eg)=0, which means —Ea|=—Ha, and neither
—Eg= Hp nor —Eg|= —Hp, which implies Pr(Ha|] —Ea)=0 and
o< PI'(HB|_‘EB)<1 .

Therefore, the premise of weak Exi, that is v(Ha,Ea)>V(Hz,Es) and v(Ha,
—EA)<v(Hs, —EB), is satisfied in the four following cases:

L. a) and ¢),
II. a) and d),
III. b) and ¢),
Iv. b) and d).

In all the «cases I-IV we Thave Pr(Ha|Es)>Pr(HslEg) and
Pr(Ha|~Ea) < Pr(Hg|—EB). Thus, by strict monotonicity in the strong Bayesian
confirmation we get c(Ha, Ea) > c¢(Hs, Eg). Thus, we proved that confirmation
measures being strictly monotonic in the strong Bayesian perspective satisfy
the weak Ex; property. With analogous proof it can be shown that
confirmation measures strictly monotonic  in the strong likelihoodist
perspective satisfy weak L-Ex; property. O



AG6. Proof of Theorem 5

Theorem 5. Confirmation measures monotonic in the strong Bayesian
perspective and measures monotonic in the strong likelihoodist perspective
satisfy weak L property. Confirmation measures strictly monotonic in the
strong Bayesian perspective, as well as confirmation measures strictly
monotonic  in  the strong  likelihoodist  perspective,  satisfy
maximality/minimality.

Proof. Suppose that csz(H, E) is a confirmation measure monotonic in the
strong Bayesian perspective. Suppose also that for hypothesis H, and
evidence E, we have E, |= H, and —FE, |= —H,. Observe that E, |= H, implies
that Pr(Hu.E.)=1 as well as —E, |- —H, implies that Pr(H,—E,)=0. This
means that Pr(HE,) attains the maximum value for the left-hand side
probability of the strong Bayesian perspective as well Pr(H,—E.) attains the
minimum value for the right-hand side probability of the strong Bayesian
perspective. Thus, for the monotonicity in the strong Bayesian perspective,
csp(Ha, E;) must be maximal.

With an analogous proof, supposing that for hypothesis Hp and evidence
Eg we have Eg |= —Hp and —Ep |= Hp, we can show that csz(Hp, Eg) must be
minimal. Thus, we proved that confirmation measures monotonic in the strong
Bayesian perspective satisfy weak L property.

Suppose now that cs (H, E) is a confirmation measure monotonic in the
strong likelihoodist perspective. Taking again the above hypothesis H, and
evidence E,, observe that E, |= H, implies that —H,= —F, and, consequently,
Pr(Eo|—Hw)=0, as well as —E,|= —H, implies that H,|= E, and, consequently,
Pr(E4H.)=1 This means that Pr(E./H,) attains the maximum value for the left-
hand side probability of the strong likelihoodist perspective as well
Pr(E.—H,) attains the minimum value for the right-hand side probability of
the strong likelihoodist perspective. Thus, for the monotonicity in the strong
likelihoodist perspective, cs.(Hq, E,) must be maximal.

With an analogous proof, supposing that for hypothesis Hp and evidence
Eg we have Ep |= —Hp and —FEp |= Hp, we can show that cs;(Hp, Eg) must be
minimal. Thus, we proved that confirmation measures monotonic in the strong
likelihoodist perspective satisfy weak L property.

Observe that E |= H is equivalent to ¢ =0 and —F |= —H is equivalent to
b =0. Thus the first part of the theorem proves that a confirmation measure
monotonic in the strong Bayesian perspective being strictly increasing with
respect to Pr(H|E) and strictly decreasing with respect to Pr(H|—E) attain their
maximal value if » = ¢ =0 (in fact, knowing that the confirmation measure is



monotonic with respect to left- and right-hand side probabilities of the strong
Bayesian perspective is sufficient for this).

Thus, we have to prove that for confirmation measures cgnss(H,E) being
strictly monotonic in the strong Bayesian perspective, i.e. strictly increasing
with respect to Pr(H|E) and strictly decreasing with respect to Pr(H|—E), if
they attain their maximal value then b = ¢ = 0. By contradiction suppose that
for some hypothesis H, and some evidence E,, we have b,>0 and ¢,= 0, and
nevertheless csmss(Hy,Ey) does attain its maximal value. Then we can consider
some hypothesis Hs and some evidence Es such that bs=0 and c;=0. This
implies that Pr(H,|E,)=Pr(Hs|Es)=1 and Pr(H,|—E,)>Pr(Hs—Es)=0, so that, by
the strict monotonicity with respect to left- and right-hand side probabilities of
the strong Bayesian perspective we get comss(Hy,Ey)< csmsa(Hs,Es). But this
means that cyuse(Hy,Ey) cannot be maximal, which is a contradiction. Thus we
proved that confirmation measures csmsp(H,E) cannot attain its maximal value
if b>0.

Analogously, we can prove that confirmation measures c¢susp(H,E) cannot
attain its maximal value if ¢>0, and that csusp(H,E) attain its minimal value if
and only if a>0 or &>0. Thus we proved that confirmation measures
csmsa(HLE) strictly monotonic in the strong Bayesian perspective satisfy
maximality/minimality.

Similarly we can prove that confirmation measures cgmsi(H,E) strictly
monotonic in the strong likelihoodist perspective, i.e. strictly increasing with
respect to Pr(E|H) and strictly decreasing with respect to Pr(E|—~H), satisfy
maximality/minimality. O

A7.Proof of Theorem 6

Theorem 6. Consider a confirmation measure c¢s.s(H, E) strictly monotonic
in the Bayesian perspective. The following statements hold:

1) there are no confirmation measures cgns(H, E) that satisty ES;

2) there exist confirmation measures c,ns(H, E) that satisfies HS;

3) there are no confirmation measures cs.s(H, E) that satisfy EIS;

4) there are no confirmation measures c,.s(H, E) that satisfy HIS;

5) there exist confirmation measures cs,s(H, E) that satisfies IS;

6) there are no confirmation measures csnp(H, E) that satisfy EHS;

7) there exist confirmation measures c¢;,s(H, E) that satisfies EHIS.
Moreover, if cmp(H, E) satisfies one among HS, IS and EHIS, it cannot satisfy
any of the remaining two symmetry properties. Finally, there are confirmation
measures csnp(H, E) that do not satisfy any symmetry property.



Proof. Before proving one by one, all the points of Theorem 6 observe that by
hypothesis csa(H, E) is a confirmation measure strictly monotonic in the
Bayesian perspective. Thus, there exists a function f;,5:[0,1]%[0,1]—R strictly
increasing with respect to the first argument and strictly decreasing with
respect to the second argument, with f,z(x,x) = 0 for all xe[0,1], such that

csm (H,E) = fons (Pr(H|E), Pr(H)).

1) Evidence symmetry
Observe that if a confirmation measure c,mp(H, E) satisfies ES, then for any
hypothesis H and any evidence £ we have:

CsmB(H, E) = —CsmB(H, _‘E).
Now, consider scenarios 3 and 4 represented in Table 3 and Table 4,
respectively.

Table 3. Contingency tables for scenario 3

H3 —|H3 Z
E; a=10 ¢3=30 azt+c3=40
—E3 b3=20 d;=40 bs+d;=60
Z az+b3;=30 c3+ds=70 |(]|: 100
Table 4. Contingency tables for scenario 4
H4 —|H4 Z
Es as=3 cs=9 astcs=12
—E4 bs=3 ds=5 bat+ds=8
Z as+bs=6 catdi=14 |l]]:20

1
For scenario 3 we have Pr(H3|E3)=0.25, Pr(H3)=0.3, Pr(H3|ﬁE3)=§, and for

3
scenario 4 we have Pr(Hi|E4)=0.25, Pr(H4)=0.3, Pr(H4|ﬁE4)=§.
Taking into account that Pr(Hs|E3)=Pr(H4|Es) and Pr(H3)=Pr(Ha), we get
Conp(H3, E3) = 5 (Pr(H; | E),Pr(H;)) = 5
S (PrCH | Ey),PHCH ) = €5 (H E). ©)

For contradiction, suppose that c.z(H,E) satisfies ES. This would imply that



Comp(H3, Ey) = =5 (H 3, —E5)

(6)
ComB (H4’E4) =—Coup (H4 ,—|E4)
(7)
Thus, by (5), (6) and (7) it should be: cema(H3, ~E3)= coms(Ha, —E4),
that is:
Somp (Pr(H 5 | —E3),Pr(H3)) = £, (Pr(H , | —Ey),Pr(H ,)). ®)

Observing that f.s(Pr(H|E), Pr(H)) is strictly increasing in the first argument
and since Pr(Hs|—E3) < Pr(Hi|—E4) while Pr(H3)= Pr(Hs), we obtain

Somp (Pr(H 5 | =E3),Pr(H3)) < f,5 (Pr(H 4 | =E,),Pr(H ). )

But (8) and (9) are contradictory and therefore cmp(H,E) cannot satisfy the
evidence symmetry ES.

2) Hypothesis symmetry
Observe that if a confirmation measure cs.3(H, E) satisfies HS, then for any
hypothesis H and any evidence E we have:

CsmB(H . E) :—CsmB(_‘H , E)
A family of confirmation measures strictly monotonic in the Bayesian
perspective csma(H, E) satisfying HS is the following:

csmns(H, E) = g(Pr(H | E) - Pr(H))
with g —R being a strictly increasing odd function (i.e., g(—x)=g(x)).
Indeed for any hypothesis H and any evidence E we have:

Pr(H|E) — Pr(H)=— [(1~ Pr(H|E)) — (1= Pr(H))] =[Pr(—H|E)~Pr(~H) ]

so that, for g(x) being an odd function, we get
cons(H, E)=g(Pr(H | E)— Pr(H))=— g(Pr(—H | E) ~ Pr(~H))=—cms(~H, E).

3) Evidence-inversion symmetry
Observe that if a confirmation measure c¢..s(H, E) satisfies EIS, then for any
hypothesis H and any evidence £, by applying the EIS twice, we have:

Coup(H,E)=—c,,z(=E,H)=c

smB

(—H,—E)

smB

(10)

10



Thus, taking the first and the last terms of (10) and considering function

fsmp(Pr(H|E), Pr(H)), we get

S (Pr(H | E),Pr(H)) = 5 (Pr(=H | —E), Pr(=H)). an

Taking into account the above scenarios 3 and 4 in Table 3 and Table 4,
respectively, we have Pr(H;|E3)=0.25, Pr(H3)=0.3, Pr(ﬂH3|ﬁE3)=§ ,
Pr(—H3)=0.7 and for scenario4 we have Pr(HiE4)=0.25, Pr(Hs)=0.3,
Pr(ﬁH4|ﬁE4)=§ , Pr(—H4)=0.7.
As observed in the proof of above point 1), we have

Conp(H3, E3) = 5 (Pr(H; | E),Pr(H;)) =

S (PECH | E,).Pr(H ) = €, (L E). (12)
If for contradiction we suppose that c..s(H,E) satisfies EIS, by (10) we should

have

CsmB(H3’E3):csmB(_‘H3’_‘E3) (13)

Comp(H 4, Ey) = Cpp(=H . —Ey) (14

Thus, by (12), (13) and (14) it should be: cms(—H3, ~E3)= csmp(—Has, —Es),
that is:

Somp Pr(=H 5 | —E3),Pr(=H3)) = f,5(Pr(=H, | =E,),Pr(=H ). (15)
Observing that f..s(Pr(H|E), Pr(H)) is strictly increasing in the first argument
and since Pr(—Hs3|—FE3) > Pr(—Hi—Es) while Pr(—H3)= Pr(—Hs), we would
obtain

S Pr(=H 5 | —E3),Pr(=H 7)) > [, (Pr(=H, | =E,),Pr(=H ). (16)
But (15) and (16) are contradictory which implies that cg.s(H,E) cannot
satisfy the evidence-inversion symmetry EIS.

11



4) Hypothesis-inversion symmetry
Observe that if a confirmation measure c,.3(H, E) satisfies HIS, then for any
hypothesis H and any evidence E, by applying the HIS twice, we have:

CsmB(H’E) = _CsmB(E’_'H) = csmB(_'H’_'E)
(17)
Since by (17) csms(H, E) =csms(—H,—E) as in the above proof for point 3) (see
equation (10)), by the same argument used to prove that cy.s(H, E) cannot
satisfy EIS, we get that cemp(H, E) cannot satisfy the hypothesis-inversion
symmetry HIS.

5)Inversion symmetry
Observe that if a confirmation measure cmp(H, E) satisfies IS, then for any
hypothesis H and any evidence E we have:

csmB(H, E) :csmB(E,H)

A family of confirmation measures cnp(H, E) strictly monotonic in the
Bayesian perspective, satisfying 1S is the following:
Pr(H | E)-Pr(H
CsmB(HﬁE)zg ( | ) ( )
Pr(H | E)+Pr(H)

with g:R—R being a strictly increasing odd function.
Indeed for any hypothesis H and any evidence E we have:

Pt E)
— Pr(H|E)—Pr(H) _ Pr(H)
CsmB(H,E)—g(PI'(H|E)+PI‘(H)J_ @H
Pr(H)
PrE|H) _
_g B _ (Pr(E|H)-Px(E))
h Wﬂm _g(Pr(EIH)+Pr(E)j_csmB(E=H)-

Pr(E)

6) Evidence-hypothesis symmetry

The same argument used in the above proof of point 3) and 4) showing that
csme(H, E) cannot satisfy EIS and HIS proves that c,.s(H, E) cannot satisfy the
evidence-hypothesis symmetry EHS.

12



7) Evidence-hypothesis-inversion symmetry
Observe that if a confirmation measure c,ng(H, E) satisfies EHIS, then for any
hypothesis H and any evidence E we have:

csmB(H, E) :csmB(_'E, _'H)
A family of confirmation measures csmp(H, E) strictly monotonic in the
Bayesian perspective, satisfying EHIS is the following:

_ Pr(H | E)—Pr(H)
Comp(H,E) —g(z_pr([—] | E)—PI’(H)J

with g-R—R being a strictly increasing odd function.
Indeed for any hypothesis H and any evidence E we have:

_( Pr(H|E)-Pr(H)
Con (H ’E)_gEZ—Pr(H|E)—Pr(H)]

_ [(1 —Pr(H)) - (1-Pr(H | E))J

(1-Pr(H))+(1-Pr(H | E))

| Pr(H | E)
_ (Pr(=H)-Pr(—~H | E)) Pr(—H)
B g[Pr(—'H) T PrH | E)J 8 PHE)
Pr(—H)

| Pr(E|-H)
B Pr(E) | (Pr(E)-Pi(E|-H)
& PrEI=H) | ¥ Pr(E) + Pr(E|-H)
Pr(E)
_ [ (U =Pr(E[~H)) - (1~ Pr(E))
“8 2 —Pr(E|-H))+ (—Pu(E))
Pr(—E | —H ) - Pr(—E)
g
2 — Pr(—E | —H ) - Pr(—E)

:C‘

Let now prove that if c,a(H, E) satisfies one of: HS, IS or EHIS, then it
cannot satisfy any of the other two remaining symmetry properties. Let us
consider one by one the three possible couples of properties from HS, IS and
EHIS.

o By contradiction suppose that c..s(H, E) satisfies properties HS and

1S. Applying first HS and after IS, we get

CsmB(H, E) = _Csmg(_‘H, E) = _CsmB(E, _‘H).
Thus, taking into account the first and the last term, we have that
csmp(H, E) satisfies HIS. But by the above point 4) this is impossible

13



and, therefore, it is also not possible that c,.s(H, E) satisfies at the
same time both HS and IS properties.
e By contradiction suppose that c,.s(H, E) satisfies properties HS and
EHIS. Applying first HS and after EHIS, we get
csmB(H, E) = _CB(_‘H, E) = _CB(_‘E, H)
Thus, taking into account the first and the last term, we have that
csmp(H, E) satisfies EIS. But by the above point 3) this is impossible
and, therefore, it is also not possible that c..s(H, E) satisfies at the
same time both HS and EHIS properties.
e By contradiction suppose that c.s(H, E) satisfies properties IS and
EHIS. Applying first IS and after EHIS, we get
CsmB(H, E) = CB(E, H) = CB(_‘H, _‘E).
Thus, taking into account the first and the last term, we have that
csmp(H, E) satisfies EHS. But by above point 6) this is impossible and,
therefore, it is also not possible that c..s(H, E) satisfies at the same
time both IS and EHIS properties.

Finally, let us now show that there are confirmation measures monotonic
in the Bayesian perspective that do not satisfy any symmetry property.
Consider the confirmation measure

D'(H,E)= \Pr(H|E)—Pr(H).
Indeed
e D'(H, E) does not satisfy HS because, in general

D'(H,E)= \JPr(H | E) - \[Pr(H )%~ ( 1-Pr(H |E) -1 Pr(H)):
- (\/Pr(—|H |E)- \/Pr(ﬂH))z ~ D'(~H, E),

e D'(H, E) does not satisfy IS because, in general

D11, E) = [Pr{FT | E) ~Pr{i7) #Pr{E | ) ~Pr{E) = D'(E.)
e D’(H, E) does not satisfy EHIS because, in general

D'(H,E)= \Pr(H | E)—[Pr(H)=
VPr(=E | =H) - Pr(=E) = D"(-E,~H),

o the other symmetry properties cannot be satisfied, because we have

already proved that there is no confirmation measure monotonic in the
Bayesian perspective satisfying those symmetry properties. O

14



AS8. Proof of Theorem 7

Theorem 7. Consider a confirmation measure c;»sp(H, E) strictly monotonic
in the strong Bayesian perspective. For any symmetry property there are
confirmation measures csmsa(H, E) satisfying it. Moreover, there are
confirmation measures csmsg(H, E) that satisfy all symmetry properties.

Proof.
1) Evidence symmetry
Observe that if a confirmation measure csmsz(H, E) satisfies ES, then for any
hypothesis H and any evidence E we have:

csmSB(H, E) = _CsmSB(H, _'E)
A family of confirmation measures c,nss(H, E) that satisfy ES is the following:

Cynsy(H. E) = g(Pr(H | E) - Pr(H | -E))
with g:R—R being a strictly increasing odd function.
Indeed for any hypothesis H and any evidence E we have:
Cynsy (H,E) = g(Pr(H | E)—Pr(H | ~E))

=—g(Pr(H | —E)~ Pr(H | E))=~Cy55(H,—E).

2) Hypothesis symmetry
Observe that if a confirmation measure css8(H, E) satisfies HS, then for any
hypothesis H and any evidence E we have:
csmSB(H, E) :_csmSB(_'H, E)
A family of confirmation measures csusp(H, E) that satisfy HS is the
following:
Cnss (H,E) = g(Pr(H | E) - Pr(H | =E))

with g:R—R being a strictly increasing odd function.
Indeed for any hypothesis H and any evidence E we have:

csmSB(H?E) = g(Pr(H | E)_ Pr(H | _‘E))

=—g((1-Pr(H | E))— (1 - Pr(H | E)))

=—g(Pr(—~H | E) — Pr(=H | —E))=—c, 5 (—H ,E).

3) Evidence-inversion symmetry
Observe that if a confirmation measure cymsp(H, E) satisfies EIS, then for any
hypothesis H and any evidence E we have:

CsmSB(H , E) =—Csms3(_‘E, H)
A family of confirmation measures cssp(H, E) that satisfy EIS is the
following:

15



o (H.E)= Pr(H | EY1 - Pr(H | —E)) - (1 - Pr(H | E))Pr(H | —E)
mss B =8 pr(H | EX1 = Pr(H | —E))+ (1 — Pr(H | E))Pr(H | —E)

with g:3R—R being a strictly increasing odd function.
Indeed for any hypothesis H and any evidence E we have:

Pr(H | E)1-Pr(H | -E))— (1 Pr(H | E))Pr(H | —E)
csmSB(HﬂE) =8
Pr(H | E)1-Pr(H | =E))+ (1- Pr(H | E))Pr(H | -E)
Pr(H |E)  Pr(=H | —E)
Pr(H) Pr(—H)

-1

Pr(H|E)1-Pr(H |—E)) | Pr(=H | E)  Pr(H |=E)
(1-Pr(H|E))Pr(H|—E) | _ Pr(—H) Pr(H)
Pr(H|ENI=Pr(H|=E)) | || (Pu(H|E) Pr(~H|~E)

(1- Pr(H | E))Pr(H | —E) Pr(H) Pr(=H) | |

Pr(—H | E) GRS
Pr(—H) Pr(H)

Pr(E|H)  Pr(=E|=H)
Pr(E) Pr(—E)
Pr(E|—H) Pr(=E| H)

Pr(E| H)Pr(—E | —H) _

~ Pr(E) Pr(—E) _ | Pr(E|=H)Pr(—E | H)
“A(milE[H) _PEISH)) |8 PEIH)PR=EI=H) |
Pr(E) Pr(~E) || Pr(E |—~H)Pr(—E | H)
Pr(E|—H) Pr(=E| H)
Pr(E) Pr(—=E)

Pr(E | H)Pr(—E |—~H) - Pr(E | —~H )Pr(—E | H)
-8 [ Pr(E |H)Pr(—E | —H) + Pr(E | <H )Pr(=E | H)J
_ [(l — Pr(—E | H))Pr(—E | ~H) - (1= Pr(—=E | ~H ))Pr(E | H)J
~“\(1=Pr(=E| H))Pr(=E | ~H) + (1 = Pr(—E | —H ))Pr(—E | H)
o (Pr(—‘E | H)(1 = Pr(—E | -H ))— (1 - Pr(—E | H ))Pr(—E | ﬁH)J

)
Pr(—E | H)(1 = Pr(=E | =H ))+ (1 - Pr(—E | H))Pr(=E | —H)
= _csmSB( _'E’ I_[) .

4) Hypothesis-inversion symmetry
Observe that if a confirmation measure c,nsp(H, E) satisfies HIS, then for any

hypothesis H and any evidence E we have:
CsmSB(H, E) :_CsmSB(E, _‘H)

16



A family of confirmation measures cnse(H, E) that satisfy HIS is the

following:
o (H.E)= g[ Pr(H | EX1 - Pr(H | —E))— (1 - Pr(H | E))Pr(H | ﬂE)J
smSBR Pr(H | E)1-Pr(H | =E))+ (1- Pr(H | E))Pr(H | -E)
with g:R—R being a strictly increasing odd function.

Indeed, suppose that cmss(H, E) satisfies EIS. Applying EIS three times we
get:

CsmSB(H, E):_CSB(_'E, H):CsmSB(_'H, _'E):_CsmSB(E, _'I_D-
Thus, taking into account the first and the last term we conclude that if
csmsp(H, E) satisfies EIS, then it satisfies also HIS. Therefore since the above
confirmation measure c,nss(H, E) satisfies EIS as proved in the previous point
(i.e., point 3)), it satisfies also the hypothesis-inversion symmetry HIS.

5) Inversion symmetry
Observe that if a confirmation measure cyns3(H, E) satisfies 1S, then for any
hypothesis H and any evidence E we have:
CsmSB(H , E) =Csms3(E, I‘D
A family of confirmation measures csnsp(H, E) that satisfy IS is the following:

Consy(H.E) = g[ Pr(H | E1-Pr(H | =E))- (1 - Pr(H | E))Pr(H | ﬁE)j

Pr(H | E)1-Pr(H | =E))+ (1- Pr(H | E))Pr(H | —E)

with g:3R—R being a strictly increasing odd function.
Indeed, by proof in point 3), we get

Pr(H | E)1-Pr(H | =E))—(1-Pr(H | E))Pr(H | —E)
Pr(H | E)1-Pr(H | =E))+ (1 - Pr(H | E))Pr(H | —E)
_ (Pr(E|H)Pr(=E| —~H) — Pr(E | -~H)Pr(~E | H)

~ °\ Pr(E | H)Pr(—E| —H) + Pr(E | —H )Pr(—E | H) |

csmSB(H’E) :g(

(18)
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We have also that

Pr(E | H)Pr(—E | —~H) — Pr(E| —H )Pr(—E | H)

Pr(E | H)Pr(—E | —H) + Pr(E | —~H Pr(—E | H)
Pr(E|H)1-Pr(E|—-H))-Pr(E |—~H )1-Pr(E| H))
Pr(E | H )1 - Pr(E|—H))+ Pr(E|—H \1 - Pr(E | H))

jzcsmSB(E’H) .

(19)

Thus, by (18) and (19) we obtain that for the considered family of
confirmation measures:
CsmSB(H, E) = CsmSB(E,I_D-

6) Evidence-hypothesis symmetry
Observe that if a confirmation measure cnss(H, E) satisfies EHS, then for any
hypothesis H and any evidence E we have:
CsmSB(H , E) =Csms3(_‘H , _‘E).
A family of confirmation measures csmsp(H, E) that satisfy EHS is the
following:
Conss(H.E) = g(Pr(H | E) = Pr(H | <))

with g-R—R being a strictly increasing odd function.
Indeed for any hypothesis H and any evidence E we have:

Cynsn (H, E) = g(Pr(H | E) = Pr(H | =E))

= g((1-Pr(H | =E))- (1 - Pr(H | E)))

= g(Pr(=H | ~E) = Pr(=H | E))= 55 (—H, —E).
Observe also that if css(H, E) satisfies EILS, then it satisfies also EHS,
because, indeed, for any hypothesis H and any evidence E, applying EIS
twice, we have:

csmsp(H, E) = —comsp(—E, H=css(—H,~E).

Consequently, a confirmation measure cssp(H, E) satisfying EIS will satisfy
also EHS, so that EHS is satisfied also by the family of confirmation
measures considered in the above point 3), that is:

Pr(H | E)1-Pr(H | -E))-(1- Pr(H | E))Pr(H | -E)
cémSB(H’E) = g

Pr(H | E)1-Pr(H | =E))+ (1 - Pr(H | E))Pr(H | —E)
with g:3R—R being a strictly increasing odd function.

18



7) Evidence-hypothesis-inversion symmetry
Observe that if a confirmation measure csnsp(H, E) satisfies EHIS, then for
any hypothesis H and any evidence E we have:

CsmSB(H B E) :CsmSB(_'E, _'H)-
A family of confirmation measures cssp(H, E) that satisfy EHIS is the
following:

¢ (H.E)= Pr(H | EX1=Pr(H | —E))— (1= Pr(H | E))Pr(H | —E)
msp B =8 Pr(H | EX1 - Pr(H | —E))+ (1 - Pr(H | E))Pr(H | -E)
(20)
with g:R—R being a strictly increasing odd function.
Indeed observe that a confirmation measure c,usg(H, E) satisfying IS and EHS
satisfies also EHIS, because by applying first IS and then EHS we get:
CsmSB(H, E) = CsmSB(E,H) = CsmSB(_'E, _'H)-

Thus, we have

csmSB(H, E) = csmSB(_'E; _'H)-
Consequently, taking into account what we proved in above points 5) and 6),
the family of confirmation measures (20) satisfies both IS and EHS, and thus,
it also satisfies the evidence-hypothesis-inversion symmetry EHIS.

As the final part of this proof, let us show now that there are confirmation
measures csmsp(H, E) that satisfy all symmetry properties.
Observe that given any confirmation measure c(H, E)
o if ¢(H, E) satisfies EIS and IS, then c¢(H, E) satisfies also ES,
o if ¢(H, E) satisfies HIS and IS, then c(H, E) satisfies also HS,
o if ¢(H, E) satisfies EHIS and IS, then c(H, E) satisfies also EHS.
Indeed,
o if ¢(H, E) satisfies EIS and IS, applying firstly EIS and after IS, we get
c(H, E) = —c(TE, H) =—c(~H,E),
so that, taking the first and last term we conclude that
c(H, E) satisfies also ES;
o if ¢(H, E) satisfies HIS and IS, applying firstly HIS and after IS, we
get
c(H, E)=—c(E,~H)=—c(—H, E),
so that, taking the first and last term we conclude that
c(H, E) satisfies also HS;
o if ¢(H, E) satisfies EHIS and IS, applying firstly £HIS and after IS, we
get
c(H, E)=c(—E,~H)=c(—H, —F),
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so that, taking the first and last term we conclude that
c(H, E) satisfies also EHS.
Thus observing that a family of confirmation measures:

¢ (H.E)= Pr(H | E)1-Pr(H | -E))- (1- Pr(H | E))Pr(H | -E)
mspUTE) =8 Pr(H | EX1 - Pr(H | —E))+ (1 - Pr(H | E))Pr(H | —E)
with g:R—R being a strictly increasing odd function, satisfies IS, EIS, HIS
and EHIS, we have to conclude that it also satisfies ES, HS and EHS. Thus, it
satisfies all the symmetry properties.
It is worthwhile to observe that, in case g is the identity, i.e. g(x)=x, this
confirmation measure is in fact the Yule Q index, because
Pr(H | E)1 - Pr(H | —E))—(1-Pr(H | E))Pr(H | —E)
Pr(H | E)1 - Pr(H | —E))+ (1-Pr(H | E))Pr(H | —E)
a d ¢ b
_atcb+d a+chb+d _ ad—bc‘
a d L C b ad +bc
a+cb+d a+cb+d
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A9. Proof of Theorem 8

Theorem 8. A confirmation measure c(H,E)=f(Pr, Prr) being strictly
monotonic in the converse Bayesian or the converse likelihoodist perspective
is not strictly monotonic in the other perspectives.

Proof. Consider again scenario 1 corresponding to the contingency table in
Table 1 and scenario 2 corresponding to the contingency table in Table 2. As
already observed in the proof of above Theorem 1, for any confirmation
measure csnmg(H,E) strictly monotonic in the Bayesian perspective we have
csms(HL,E)) = csmp(Ha,E>).
Observe also that Pr(H:)=Pr(H»)=0.2 and that Pr(Hi|—FE:)=0.114 while
Pr(H>|~E»)=0, so that for any converse Bayesian confirmation measure
csmes(HLE) strictly monotonic in the converse Bayesian perspective we get
csmep(H1LE) < csmep(Ha,E).
As a result, comep(H,E) cannot respect the strict monotonicity in the Bayesian
perspective. With analogous examples one can prove the thesis for all
remaining perspectives. One can proceed similarly with  confirmation
measures csmcr(H,E) being strictly monotonic in the converse likelihoodist
perspective. O

A10. Proof of Lemma 1

Lemma 1. If ¢(H,E) is a confirmation measure monotonic in the
perspective P, then c¢*(H, E) is in the perspective showed in Table 5,
Pe{Bayesian (B), strong Bayesian (SB), likelihoodist (L), strong likelihoodist
(SL), converse Bayesian (CB), converse likelihoodist (CL)},
Xe{ES,HS,EIS,HIS,IS,EHS,EHIS} .

Table 5. Transformation of perspectives of confirmation measures after
negation and/or inversion of evidence £ and hypothesis H

X\P B SB L SL CB CL
ES CB SB L SL B CL
HS B SB CL SL CB L
EIS L SL CB SB CL B
HIS CL SL B SB L CB
JAY L SL B SB CL CB
EHS CB SB CL SL B L
EHIS | CL SL CB SB L B
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Proof. Suppose c(H, E) is a confirmation measure monotonic in the Bayesian
perspective. Then there exist f:[0,1]%[0,1] =R non-decreasing with the first
argument and non-increasing with the second argument, with f{x,x) = 0 for all
x€[0,1], such that c¢(H,E) = f{Pr(H|E), Pr(H)). Thus we have:

o ("(H,E)=—c(H,~E) = —f(Pr(H|E), Pr(H)), which is non-increasing
in Pr(H|~E) and non-decreasing in Pr(H), so that ¢**(H,E) is in the
converse Bayesian perspective;

o "(HE)=-c(—H, Ey= — f1-Pr(H|E), 1-Pr(H)), which is non-
decreasing in Pr(H|E) and non-increasing in Pr(H), so that ¢"™(H,E) is
in the Bayesian perspective;

o *S(HE)=-c(—E, H)=-f(1-Pr(E|H), 1-Pr(E)), which is non-
decreasing in Pr(E|H) and non-increasing in Pr(E), so that it c**(H,E)
in the likelihoodist perspective;

o ("(H,E)=—c(E—~H) =fPr(E|-H), Pr(E)), which is non-increasing
in Pr(E|~H) and non-decreasing in Pr(E), so that ¢™(H,E) is in the
converse likelihoodist perspective;

o (S(HE)=c(EH)=f(Pr(E|H), Pr(E)), which is non-decreasing in
Pr(E|H) and non-increasing in Pr(E), so that ¢(HE) is in the
likelihoodist perspective;

o S(HE)=c(—HE)=f{1-Pr(H~E), 1-Pr(H)), which is non-
increasing in Pr(H|~E) and non-decreasing in Pr(H), so that ¢*"*(H E)
is in the converse Bayesian perspective;

o S(HE)=c(—E ~H)= f1-Pr(E[-H), 1-Pr(E)), which is non-
increasing in Pr(£|~H) and non-decreasing in Pr(E), so that ¢*S(H F)
is in the converse likelihoodist perspective.

The other cases can be proved analogously. |

All. Proof of Lemma 2

Lemma 2. For any transformation c“(H,E) of c(H, E), where
Xe{ES,HS,EIS,HIS,IS,EHS,EHIS}, there exists an inverse transformation X!

such that ¢ (H,E)=c* *(H,E)=c(H,E).
More precisely we have:

e ES'=ES,

e HS'=HS,
e EIS'=HIS,
e HIS'=EIS,
o IS'=IS,
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e EHS'=EHS,
e EHIS'=EHIS.

Proof. Let us observe, that applying the ES twice we have
cSE(H, E) = -c*(H, ~E) = c¢(H, E),
so that we can conclude that ES'=ES.
The other cases can be proved analogously.
Observe that for Xe {ES,HS,IS,EHS, EHIS}, we get X=X"', so that we get

' (H,E)=c™(H,E)=c* *(H,E)=c(H,E)
Moreover, we have
CEISHIS (H, E) — CHISEIS (H,E) — C(H,E)
so that, also for X e {EIS,HIS}, we get
& (H,E)=c* ¥ (H,E)=c(H,E). o

Al12. Proof of Lemma 3

Lemma 3. Given confirmation measures c(H, E) and ci(H, E) and
X,Ye {ES,HS,EIS,HIS,IS,EHS,EHIS},  such  that  c(H, E)=¢'(H,E),
confirmation measure ci(H, E) satisfies symmetry property Y, that is ci(H, E)=
cly (H ,E ), if and only if confirmation measure c(H, E) satisfies property

XYX, that is c(H, Ey=c"™ (H,E).

Proof. Suppose that ci(H, E) satisfies symmetry property Y and therefore
ci(H, E)= cly (H,E). Remembering that c(H, E)=c;* (H,E), we get
o(H, Ey=c (H,E)= ¢ (H,E)=c"" (H,E).

Thus, we proved that if ci(H, E) satisfies symmetry property Y, then c(H, E)
satisfies symmetry property XYX".
Suppose now that c(H, E) satisfies symmetry property XYX"'. Observe that by

c(H, E)=01X(H,E), we get chl (H,E)zc1 (H,E)
Thus we have

¢,(H,E)=c*"(H,E)=c*"" (H,E)=

M (H,E)=c""¥(H,E)=c!(H.E)

Thus, we proved that if c¢(H, E) satisfies symmetry property XYX"!, then
ci1(H, E) satisfies symmetry property Y. O
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A13. Proof of Theorem 9

Theorem 9. Consider a confirmation measure

o cui(H, E) strictly monotonic in the likelihoodist perspective , i.e.,
being strictly increasing with respect to Pr(E|H) and strictly
decreasing with respect to Pr(£),

o cuce(H, E) strictly monotonic in the converse Bayesian perspective,
i.e., being strictly decreasing with respect to Pr(H|~E) and strictly
increasing with respect to Pr(H),

o cuci(H, E) strictly monotonic in the converse likelihoodist
perspective, i.e., being strictly decreasing with respect to Pr(E|—H)
and strictly increasing with respect to Pr(E).

We have that:

1) there exist confirmation measures cour(H, E) and cenci(H, E) that
satisfy ES, while there are no confirmation measures csucp(H, E) that
satisfy ES,

2) there exist confirmation measures cymcg(H, E) that satisty HS, while
there are no confirmation measures cgu(H, E) and concr(H, E) that
satisty HS;

3) there are no confirmation measures csui(H, E), csmes(H, E) and
csmer(H, E) that satisfy EIS;

4) there are no confirmation measures cgur(H, E), csmes(H, E) and
csmer(H, E) that satisty HIS;

5) there exist confirmation measures coi(H, E), comes(H, E) and
csmer(H, E) that satisfy IS;

6) there are no confirmation measures csu(H, E), csmes(H, E) and
csmer(H, E) that satisfy EHS;

7) there exist confirmation measures coiz(H, E), comep(H, E) and
csmer(H, E) that satisfy EHIS.

Moreover, if comcs(H, E) (csm(H, E) or comcr(H, E)) satisfies one among HS,
1S and EHIS (one among ES, IS and EHIS), it cannot satisfy any of the
remaining two symmetry properties. Finally, there are confirmation measures
csmi(H, E), csmes(H, E) and cgmcr(H, E) that do not satisfy any symmetry

property.

Proof. Observe that if cup(H, E) is a confirmation measure strictly
monotonic in the Bayesian perspective, then, by Lemma 1

csmi(H, E)= ¢
likelihoodist perspective. Thus, by Lemma 3, remembering that by Lemma 2

IS =IS, we have that c,u(H, E) satisfies a symmetry property IS Y IS if and
only if ceus(H, E)  satisfies the symmetry property Y. By Theorem 6

Is : . . .
B (H E ) is a confirmation measure strictly monotonic in the
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csmp(H, E) can satisfy one among HS, IS and EHIS. Consequently,
csmi(H, E) can satisfy one of the following three symmetry properties

o [SHSIS=ES,

o [SISIS=IS,

e [SEHISIS=FEHIS.
We can prove that IS HS IS = ES as follows. For any confirmation measure
c(H, E) we get
CISHS]S(H, E) — HSIS(E, H) — _CIS(_‘E, H) — _C(H, _‘E) — CES(H, E)
The other two cases, can be proved analogously.

To prove that any confirmation measure cg..(H, E) strictly monotonic in
the likelihoodist perspective cannot satisfy properties HS, EIS, HIS and EHS
we can use two contingency tables obtained from those in Table 3 and Table 4
by applying to the variables transformation IS (i.e. £ exchanges with H and
—FE exchanges with —H), which permits to pass from a confirmation measure
csmp(H, E) strictly monotonic in the Bayesian perspective to a confirmation
measure cgnr(H, E) strictly monotonic in the likelihoodist perspective. We can
prove that any confirmation measure cyn(H, E) cannot satisfy HS, EIS, HIS
and EHS, by using the so obtained contingency tables and adopting arguments
analogous to those used in Theorem 6 to prove that any confirmation measure
csme(H, E) does not satisfy ES, EIS, HIS and EHS.

Proceeding in the same way, we can prove the properties satisfied and
not satisfied by confirmation measures comcp(H, E) and coucr(H, E). In
particular,

e for confirmation measures cyucp(H, E), remembering that by Lemma
1 there exists a confirmation measure csmp(H, E) such that

csmCB(H,E)z—c "(H,E) and that by Lemma 2 ES'=ES, by

smB
Lemma 3 we get that cucs(H, E) can satisfy one of the following
three symmetry properties:
- ESHSES=HS,
- ESISES=EHIS,
- ESEHISES=1IS;
o for confirmation measures cgucr(H, E), remembering that by Lemma
1 there exists a confirmation measure csa(H, £) such that

comci(H, E) =—c,, 2" (H,E) and that by Lemma 2 HIS'=EIS, by

Lemma 3 we get that concr(H, E) can satisfy one of the following
three symmetry properties:

- HISHSEIS=ES,

- HISIS EIS = EHIS,

- HISEHISEIS=1S.
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To prove that any confirmation measure cgmcg(H, E) cannot satisfy
properties ES, EIS, HIS and EHS we can use two contingency tables obtained
from those ones in Table 3 and Table 4 by applying to the variables
transformation ES (i.e. E exchanges with —F), which permits to pass from a
confirmation measure cs»s(H, E) to a confirmation measure csmcs(H, E).

Analogously, to prove that any confirmation measure cgucr(H, E) cannot
satisfy properties HS, EIS, HIS and EHS we can use two contingency tables
obtained from those in Table 3 and Table 4 by applying to the variables
transformation HIS (i.e. H exchanges with £ and E exchanges with —H),
which permits to pass from a confirmation measure csup(H, E) to a
confirmation measure csncr(H, E).

On the basis of this last result, proceeding in the same way as in Theorem
6 where we proved the analogous statement for confirmation measures
csms(H, E) strictly monotonic in the Bayesian perspective, we can prove that if
csmep(H, E) (comi(H, E) ot camcr(H, E)) satisfies one among HS, IS and EHIS
(one among ES, IS and EHIS), it cannot satisfy any of the remaining two
symmetry properties. For example, to prove that a confirmation measure
csmi(H, E) satisfying symmetry property ES cannot satisfy also symmetry
property IS, we can proceed as follows. By contradiction suppose that
csmi(H, E) satisfies properties £S and IS. Applying first ES and after 1S, we get

CsmL(H, E) = —CsmL(H, - E) = —CsmL(_‘E, H)

Thus, taking into account the first and the last term, we have that cour(H, E)
satisfies FIS. But we have already proved that this is impossible and,
therefore, it is also not possible that ¢, (H, E) satisfies at the same time both
ES and IS properties.

Finally, here are confirmation measures cgur(H, E), csmca(H, E) and
csmer(H, E) that do not satisfy any symmetry property:

coni(H, E) = \[Pr(E| H) —[Pr(E),
CsmCB(Ha E) = \/Pr(H) - \/Pr(H | _‘E)’
coni(H, E) = \JPr(E) - Pr(E | —H).

Proceeding analogously as in the final part of the proof of Theorem 6, one can
show that they do not satisfy any of the considered symmetry properties.

O
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Al4. Proof of Theorem 10

Theorem 10. Consider a confirmation measure comsi(H, E)  strictly
monotonic in the strong likelihoodist perspective, i.e., being strictly increasing
with respect to Pr(£|H) and strictly decreasing with respect to Pr(—E| H). For
any symmetry property there are confirmation measures csusr.(H, E) satisfying
it. Moreover, there are confirmation measures cgusi(H, E) that satisfy all
symmetry properties.

Proof. Observe that if ceusi(H, E) is a confirmation measure strictly
monotonic in the likelihoodist perspective, then, by Lemma 1 ¢’ (H E ) is

a confirmation measure strictly monotonic in the strong Bayesian perspective.
Thus, by Lemma 3, we have that cs2(H, E) satisfies a symmetry property if
and only if cS[quL (H ,E ) satisfies the same symmetry property. Consequently,
the confirmation measure cyusz(H, E) satisfies or does not satisfy the same
symmetry properties as confirmation measure strictly monotonic in the strong

Bayesian perspectives as presented in Theorem 7.
For the same reasons, a family of confirmation measures:

o (H.E)= Pr(E | H)1-Pr(E|—H))-(1-Pr(E | H))Pr(E | -H)

st E) =8 (1—=Pr(E| H))Pr(E | -H) + (1 - Pr(E | H))Pr(E | -H)
with g:3R—R being a strictly increasing odd function, satisfies all the
symmetry properties. O
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